The CompositeBathe class creates a two-step implicit second order integrator that is used in a DynamicAnalysis. First step assumes trapezoidal rule, this is displacement and velocity are approximated as,
\[ V_{n+{^1/{_2}}} = V_{n} + \frac{\Delta t}{4} \left( A_{n+{^1/{_2}}} + A_n \right) \,,\\ U_{n+{^1/{_2}}} = U_{n} + \frac{\Delta t}{4} \left( V_{n+{^1/{_2}}} + V_n \right) \,, \]
thus, the effective stiffness matrix and force vector are computed as,
\[ \textbf{K}_{\textrm{eff}} = \textbf{K}^{(i-1)}_{n+{^1/{_2}}} + \frac{16}{\Delta t^2} \textbf{M} + \frac{4}{\Delta t} \textbf{C} \,,\\ \textrm{F}_{\textrm{eff}} = \rm{R}_{n+{^1/{_2}}}^{(i)} - \textrm{F}_{n+{^1/{_2}}}^{(i-1)} + \textbf{M} \left(\frac{8}{\Delta t}V_n + A_n - \frac{16}{\Delta t^2} \Delta U \right) + \textbf{C} \left(V_n - \frac{4}{\Delta t} \Delta U\right) \,, \]
Second step assumes a 3-point Euler backward method, this is velocity and acceleration are approximated as,
\[ V_{n+1} = \frac{1}{\Delta t} \left( U_{n} - 4\, U_{n+{^1/{_2}}} + 3\, U_{n+1}\right)\,, \\ A_{n+1} = \frac{1}{\Delta t} \left( V_{n} - 4\, V_{n+{^1/{_2}}} + 3\, V_{n+1}\right)\,, \]
thus, the effective stiffness matrix and force vector are now computed as,
\[ \textbf{K}_{\textrm{eff}} = \textbf{K}^{(i-1)}_{n+1} + \frac{9}{\Delta t^2} \textbf{M} + \frac{3}{\Delta t} \textbf{C} \\ \textrm{F}_{\rm{eff}} = \textrm{R}_{n+1}^{(i)} - \textrm{F}_{n+1}^{(i-1)} + \textbf{C} \left( \frac{3}{\Delta t}U_{n+1}^{(i-1)} - \frac{4}{\Delta t}U_{n+{^1/{_2}}} + \frac{1}{\Delta t}U_{n}\right) - \textbf{M} \left(\frac{9}{\Delta t^2}U_{n+1}^{(i-1)} - \frac{12}{\Delta t^2}U_{n+{^1/{_2}}} + \frac{3}{\Delta t^2}U_{n} - \frac{4}{\Delta t}V_{n+{^1/{_2}}} + \frac{1}{\Delta t}V_{n}\right) \]
where \(\textbf{K}_{\textrm{eff}}\) and \(\textrm{F}_{\textrm{eff}}\) are used to compute \(\delta U^{(i)} = \textbf{K}_{\textrm{eff}}^{-1} \textrm{F}_{\textrm{eff}}\) and \(\Delta U = \displaystyle{\sum_i \delta U^{(i)}}\) used in the Algorithm.
REFERENCE:
The python Pre-Analysis in the 01-Pre_Process/Method/Attach.py file provides with an interface to create a CompositeBathe integrator. We use the addIntegrator() as follows:
addIntegrator(tag, attributes):
Example
A BATHE integrator can be defined using the python interface as follows:
SVL.addIntegrator(tag=1, attributes={'name': 'Bathe', 'dt': 0.00100})
Application
This integrator has not been validated yet.
On the contrary, the 01-Pre_Process/Method/Remove.py file provides with an interface to depopulate the Entities
dictionary. For example, to remove an already define Integrator, use:
The C++ Run-Analysis in the 02-Run_Process/10-Integrators/04-Bathe/CompositeBathe.cpp file provides the class implementation. A CompositeBathe is created using the built-in json parse-structure provided in the Driver.hpp and is defined inside the "Simulations" json field indicating its "Tag" as follows,
{ "Simulations": { "Tag": { "combo": int, "attributes": { "integrator": { "name": "BATHE", "ktol": double, "mtol": double, "ftol": double, "dt": double, } } } } }
Variable | Description |
---|---|
combo | The combination to which this Integrator will be defined. |
mTol | The specified tolerance for setting \(M_{ij} \sim 0.0\). |
kTol | The specified tolerance for setting \(K_{ij} \sim 0.0\). |
fTol | The specified tolerance for setting \(F_{j} \sim 0.0\). |
dt | The time step for the analysis. |