The lin3DShell4 class creates a linearized two-dimensional shell element with four-nodes. Each node has six degrees-of-freedom, for which three degree-of-freedom represent three translation in the X-, Y-, and Z-directions, and the other three rotation about the X-, Y-, and Z-directions. Figure provides a simple representation of this element in which the local coordinates are represented by the $r$-, $s$-, and $t$-axis, and (1), (2), (3) and (4) represent the nodes of the element respectively. The element mass, damping and stiffness matrices, as well as internal force vector are computed in local-coordinates and then transformed into global coordinates. Numerical integration is performed to compute matrices and vectors.
The isoparametric transformation has the advantage that every element is treated in the same manner. In this regard, mass and stiffness matrices as well as force vector are evaluated using the same reference coordinates as follows
\[ \mathcal{M}^\textrm{e} = \int_{-1}^1 \int_{-1}^1 {\textbf{N}^\textrm{e}_\textrm{m}} (r, s)^\top \, \rho^\textrm{e} \, \textbf{N}^\textrm{e}_\textrm{m}(r, s) \det \mathbf{J}^\textrm{e} \, dr \, ds + \int_{-1}^1 \int_{-1}^1 {\textbf{N}^\textrm{e}_\textrm{p}} (r, s)^\top \, \rho^\textrm{e} \, \textbf{N}^\textrm{e}_\textrm{p}(r, s) \det \mathbf{J}^\textrm{e} \, dr \, ds \,, \\ \mathcal{K}^\textrm{e} = \int_{-1}^1 \int_{-1}^1 {\textbf{B}^\textrm{e}_\textrm{m}} (r, s)^\top \, \mathbb{C}^\textrm{e}_\textrm{m} \, \textbf{B}^\textrm{e}_\textrm{m}(r, s) \det \mathbf{J}^\textrm{e} \, dr \, ds + \int_{-1}^1 \int_{-1}^1 {\textbf{B}^\textrm{e}_\textrm{p}} (r, s)^\top \, \mathbb{C}^\textrm{e}_\textrm{p} \, \textbf{B}^\textrm{e}_\textrm{p}(r, s) \det \mathbf{J}^\textrm{e} \, dr \, ds\,, \\ \mathcal{F}^\textrm{e} = \int_{-1}^1 \int_{-1}^1 {\textbf{N}^\textrm{e}_\textrm{m}} (r, s)^\top \, \textbf{F}_b^\textrm{e} \det \mathbf{J}^\textrm{e} \, dr \, ds \,, \nonumber \]
where \(\rho^\textrm{e}\) is the element density, \(\textbf{N}^\textrm{e}_\textrm{m}, \textbf{N}^\textrm{e}_\textrm{p}\) are the shape function matrix for the membrane and plate behavior, \(\mathbb{C}^\textrm{e}_\textrm{m}, \mathbb{C}^\textrm{e}_\textrm{p}\) are the material constitutive law for membrane and plate behavior, and \(\textbf{B}^\textrm{e}_\textrm{m}(r, s), \textbf{B}^\textrm{e}_\textrm{p}(r, s)\) are the well-known linear (material) strain-displacement matrix for the membrane and plate effects.
The mass and stiffness matrices as well as the force vector in global coordinates are defined as:
\[ \textbf{M}^\textrm{e} = \textbf{T}_\textrm{e}^\top \, \mathcal{M}^\textrm{e} \, \textbf{T}_\textrm{e} \,, \; \textbf{K}^\textrm{e} = \textbf{T}_\textrm{e}^\top \, \mathcal{K}^\textrm{e} \, \textbf{T}_\textrm{e} \,, \; \textbf{F}^\textrm{e} = \textbf{T}_\textrm{e}^\top \, \mathcal{F}^\textrm{e} \,, \]
In addition, the transformation matrix is
\[ \textbf{T}_\textrm{e} = \begin{bmatrix} \textbf{N} & 0 & 0 & 0 \\ 0 & \textbf{N} & 0 & 0 \\ 0 & 0 & \textbf{N} & 0 \\ 0 & 0 & 0 & \textbf{N} \end{bmatrix} \,, \; \text{ with } \textbf{N} = \begin{bmatrix} \hat{\textbf{N}} & 0 \\ 0 & \hat{\textbf{N}} \end{bmatrix} \,, \]
and \(\hat{\textbf{N}} = [\hat{\textrm{n}}_1, \hat{\textrm{n}}_2, \hat{\textrm{n}}_3]^\top\) is the unit matrix of local coordinate axes, and \(\hat{\textrm{n}}_\textrm{i}\) is the unit vector of the i-th local coordinate axis. Note that \(\hat{\textbf{N}} \in \mathbb{R}^{3 \times 3}\), and \(\hat{\textrm{n}}_\textrm{i} \in \mathbb{R}^3\). Note that \(\textbf{M}^\textrm{e}, \textbf{K}^\textrm{e} \in \mathbb{R}^{\textrm{N}_\textrm{dof}^\textrm{e} \times \textrm{N}_\textrm{dof}^\textrm{e}}\) with \(\textrm{N}_\textrm{dof}^\textrm{e} = 24\) in this case.
REFERENCE:
The python Pre-Analysis in the 01-Pre_Process/Method/Attach.py file provides with an interface to populate the Entities
dictionary. This file contains several functions to populate specific fields. For example, to create a lin3DShell4, using json format, use:
addElement(tag, name='lin3DShell4', conn, attributes):
Example
A LIN3DSHELL4 element can be defined using the python interface as follows:
SVL.addElement(tag=1, name='lin3DShell4', conn=[1,2,3,4], attributes={'np': 9, 'rule': 'Gauss', 'section': 1})
Application
Please refer to the H03-ST_Lin_3DSlabPointLoad_ElasticPStress_Shell4.py file located at 03-Validations/01-Debugging/ to see an example on how to define a lin3DShell4 element.
On the contrary, the 01-Pre_Process/Method/Remove.py file provides with an interface to depopulate the Entities
dictionary. For example, to remove an already define Element, use:
The C++ Run-Analysis in the 02-Run_Process/04-Elements/08-Shell/lin3DShell4.cpp file provides the class implementation. A lin3DShell4 element is created using the built-in json parse-structure provided in the Driver.hpp. A lin3DShell4 is defined inside the "Elements" json field indicating its "Tag" as follows,
{ "Elements": { "Tag": { "name" : "LIN3DSHELL4", "conn" : [ ], "attributes": { "np": int, "rule": str, "section": int } } } }
Variable | Description |
---|---|
Tag | Unique element object identifier. |
conn | The element connectivity node array. |
np | Number of quadrature-points used for the integration. |
rule | The quadrature integration name rule =GAUSS, LOBATTO. |
section | The section identifier. |
np
= 1,4,9,16 are supported, another value assumes np
=9. A LIN3DSHELL4 element between nodes 1, 2, 3 and 4, made of section 1 using with 9 integration points is constructed as:
{ "Elements": { "1": { "name" : "LIN3DSHELL4", "conn" : [1,2,3,4], "attributes": { "np": 9, "rule": "GAUSS", "section": 1 } } } }