The UnxBoucWen3DLink class creates a uniaxial Bouc-Wen element with two-nodes in three-dimensions. The number of degree-of-freedom depend on the node. Currently node with 3 (three translation) and 6 (three translation and three rotation) dofs are supported. The main purpose of this element is to force uniaxial behavior along a certain direction. Figure provides a simple representation of this element where (1) and (2) represent the start and end nodes.
The UnxBoucWen3DLink mass matrix in global coordinates is \(\textbf{M}^\textrm{e} = 0\). On the other hand, the UnxBoucWen3DLink solves the differential equation:
\[ \dot{z}(t)=(1 - (\beta \, \textrm{sign}[z(t)\dot{u}(t)] + \gamma)\|z(t)\|^\eta )\dot{u}(t) \,, \]
and the force is computed as
\[F(z,u) = q_y\,z + \alpha\,K_0\,U\,, \]
where \(q_y\) is the yield force of hysteretic component.
The local to global transformation matrix is
\[ \textbf{T}_\textrm{e} = \begin{bmatrix} \textbf{N} & 0 \\ 0 & \textbf{N} \end{bmatrix} \,, \; \text{ with } \textbf{N} = \begin{bmatrix} \hat{\textbf{N}} & 0 \\ 0 & \hat{\textbf{N}} \end{bmatrix} \,, \]
and \(\hat{\textbf{N}} = [\hat{\textrm{n}}_1, \hat{\textrm{n}}_2, \hat{\textrm{n}}_3]^\top\) is the unit matrix of local coordinate axes, and \(\hat{\textrm{n}}_\textrm{i}\) is the unit vector of the i-th local coordinate axis. Note that \(\hat{\textbf{N}} \in \mathbb{R}^{3 \times 3}\), and \(\hat{\textrm{n}}_\textrm{i} \in \mathbb{R}^3\). Note that \(\textbf{M}^\textrm{e}, \textbf{K}^\textrm{e} \in \mathbb{R}^{\textrm{N}_\textrm{dof}^\textrm{e} \times \textrm{N}_\textrm{dof}^\textrm{e}}\) with \(\textrm{N}_\textrm{dof}^\textrm{e} = 12\) in this case.
The stiffness matrices as well as the force vector in global coordinates are defined as:
\[ \textbf{K}^\textrm{e} = \textbf{T}_\textrm{e}^\top \, \mathcal{K}^\textrm{e} \, \textbf{T}_\textrm{e} \,, \; \textbf{F}^\textrm{e} = \textbf{T}_\textrm{e}^\top \, \mathcal{F}^\textrm{e} \,, \]
and \(\hat{\textbf{N}} = [\hat{\textrm{n}}_1, \hat{\textrm{n}}_2, \hat{\textrm{n}}_3]^\top\) is the unit matrix of local coordinate axes, and \(\hat{\textrm{n}}_\textrm{i}\) is the unit vector of the i-th local coordinate axis. Note that \(\hat{\textbf{N}} \in \mathbb{R}^{3 \times 3}\), and \(\hat{\textrm{n}}_\textrm{i} \in \mathbb{R}^3\). Note that \(\textbf{M}^\textrm{e}, \textbf{K}^\textrm{e} \in \mathbb{R}^{\textrm{N}_\textrm{dof}^\textrm{e} \times \textrm{N}_\textrm{dof}^\textrm{e}}\) with \(\textrm{N}_\textrm{dof}^\textrm{e} = 6, \text{ or } 12\) (solid or structural).
REFERENCE:
The python Pre-Analysis in the 01-Pre_Process/Method/Attach.py file provides with an interface to populate the Entities
dictionary. This file contains several functions to populate specific fields. For example, to create a UnxBoucWen3DLink, using json format, use:
addElement(tag, name='UnxBoucWen3DLink', conn, attributes):
Example
A UNXBOUCWEN3DLINK element can be defined using the python interface as follows:
SVL.addElement(tag=1, name='UnxBoucWen3DLink', conn=[1,2], attributes={'alpha': 0.1, 'eta': 1.0, 'beta': 0.5, 'gamma': 0.5, 'Fy': 250, 'k0': 250, 'dir': 1})
Application
Please refer to the A10-DY_3D_UniAxial_BoucWen_Link_Param1.py file located at 03-Validations/01-Debugging/ to see an example on how to define a UnxBoucWen3DLink element.
On the contrary, the 01-Pre_Process/Method/Remove.py file provides with an interface to depopulate the Entities
dictionary. For example, to remove an already define Element, use:
The C++ Run-Analysis in the 02-Run_Process/04-Elements/02-Link/UnxBoucWen3DLink.cpp file provides the class implementation. A UnxBoucWen3DLink element is created using the built-in json parse-structure provided in the Driver.hpp. A UnxBoucWen3DLink is defined inside the "Elements" json field indicating its "Tag" as follows,
{ "Elements": { "Tag": { "name" : "UNXBOUCWEN3DLINK", "conn" : [ ], "attributes": { "nmax": int, "Fy": double, "k0": double, "alpha": double, "eta": double, "beta": double, "gamma": double, "tol": double, "dim": double, "dir": int } } } }
Variable | Description |
---|---|
Tag | Unique positive element identifier. |
conn | The element connectivity node array. |
Fy | The yield force. |
k0 | The initial stiffness. |
alpha | The stiffness ratio \(\alpha \in [0,1]\). |
eta | The hysteresis shape parameter. |
beta | The hysteresis shape parameter. |
gamma | The hysteresis shape parameter. |
nmax | Number of maximum iteration Newton-Raphson. |
tol | Tolerance to accept convergence of solution. |
dim | The number of degree of freedom of the nodes. |
dir | The direction of action in local coordinates (1, 2, or 3). |
A UNXBOUCWEN3DLINK element between nodes 1 and 2 with 3 dofs, acting on 1-direction in a 3D problem is constructed as:
{ "Elements": { "1": { "name" : "UNXBOUCWEN3DLINK", "conn" : [1,2], "attributes": { "nmax": 50, "Fy": 250.0, "k0": 250.0, "alpha": 0.1, "eta": 1.0, "beta": 0.5, "gamma": 0.5, "tol": 1.0E-08, "dim": 3, "dir": 0 } } } }