Background
A QuadratureRule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. The most common domain of integration for such a rule is taken as [−1, 1], so the rule is stated as:
- One-dimensional case:
\[ \displaystyle{ \int _{-1}^{1}f(x)\,dx \approx \sum_{i=1}^{n} w_{i} \, f(x_{i})} \]
- Two-dimensional case:
\[ \displaystyle{ \int_{-1}^{1} \int_{-1}^{1} f(x,y) \,dx\,dy \approx \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} \, w_{j} \, f(x_{i},y_{j}) } \]
- Three-dimensional case:
\[ \displaystyle{ \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1}f(x,y,z)\,dx\,dy\,dz \approx \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} w_{i} \, w_{j} \, w_{k} \, f(x_{i},y_{j},z_{k})} \]
where \(xi\) are the quadrature points and \(w_i\) for \(i = 1, \ldots, n\) the weights.
REFERENCES:
- Bathe, K. Jurgen, "Finite Element Procedures", Chapter 5: pages 465-468. Prentice-Hall, 1996.
- R. Lobatto, "Lessen over de differentiaal- en integraalrekening" , 1–2 , 's Gravenhage (1851–1852)
Gauss Quadrature
Gaussian quadrature is optimal because it fits all polynomials up to degree \(2n - 1\) exactly, where \(n\) is the number of integration points.
- One integration point:
wi | xi |
2.000000000000000 | 0.000000000000000 |
- Two integration point:
wi | xi |
1.000000000000000 | -0.577350269189626 |
1.000000000000000 | 0.577350269189626 |
- Three integration point:
wi | xi |
0.555555555555556 | -0.774596669241483 |
0.888888888888889 | 0.000000000000000 |
0.555555555555556 | 0.774596669241483 |
- Four integration point:
wi | xi |
0.347854845137454 | -0.861136311594053 |
0.652145154862546 | -0.339981043584856 |
0.652145154862546 | 0.339981043584856 |
0.347854845137454 | 0.861136311594053 |
- Five integration point:
wi | xi |
0.236926885056189 | -0.906179845938664 |
0.478628670499365 | -0.538469310105683 |
0.568888888888889 | 0.000000000000000 |
0.478628670499365 | 0.538469310105683 |
0.236926885056189 | 0.906179845938664 |
- Six integration point:
wi | xi |
0.171324492379170 | -0.932469514203152 |
0.360761573048139 | -0.661209386466265 |
0.467913934572691 | -0.238619186083197 |
0.467913934572691 | 0.238619186083197 |
0.360761573048139 | 0.661209386466265 |
0.171324492379170 | 0.932469514203152 |
- Seven integration point:
wi | xi |
0.129484966168870 | -0.949107912342759 |
0.279705391489277 | -0.741531185599395 |
0.381830050505119 | -0.405845151377397 |
0.417959183673469 | 0.000000000000000 |
0.381830050505119 | 0.405845151377397 |
0.279705391489277 | 0.741531185599395 |
0.129484966168870 | 0.949107912342759 |
- Note
- Integration in higher dimensions are performed using the the same information provided above.
Lobatto Quadrature
It is similar to Gaussian quadrature with the following differences: (1) The integration points include the end points of the integration interval. (2) It is accurate for polynomials up to degree \(2n - 3\), where \(n\) is the number of integration points.
- Two integration point:
wi | xi |
1.000000000000000 | -1.000000000000000 |
1.000000000000000 | 1.000000000000000 |
- Three integration point:
wi | xi |
0.333333333333333 | -1.000000000000000 |
1.333333333333333 | 0.000000000000000 |
0.333333333333333 | 1.000000000000000 |
- Four integration point:
wi | xi |
0.166666666666667 | -1.000000000000000 |
0.833333333333333 | -0.447213595499958 |
0.833333333333333 | 0.447213595499958 |
0.166666666666667 | 1.000000000000000 |
- Five integration point:
wi | xi |
0.100000000000000 | -1.000000000000000 |
0.544444444444444 | -0.654653670707977 |
0.711111111111111 | 0.000000000000000 |
0.544444444444444 | 0.654653670707977 |
0.100000000000000 | 1.000000000000000 |
- Note
- Integration in higher dimensions are performed using the the same information provided above.
-
Currently integration for TRIA and TETRA are performed using Gauss quadrature.